Molecular Dynamics Simulations of Hydrogen Diffusion in Aluminum
نویسندگان
چکیده
منابع مشابه
Effects of Aluminum Incorporation in Tobermorite Structure on Chloride Diffusion: A Molecular Dynamics Simulation Study
In this paper, the effects of different aluminum to silicon ratios in silicate chains of calcium silicate hydrates (C-S-H) are evaluated on the diffusion coefficient of chloride ions by molecular dynamics method. Tobermorite is a crystalline phase that is used for studying C-S-H properties in nano scale, because of its analogous chemical composition to C-S-H. Aluminum incorporation in C-S-H and...
متن کاملMolecular dynamics simulations of rapid hydrogen production from water using aluminum clusters as catalyzers.
Hydrogen production by metal particles in water could provide a renewable energy cycle, if its reaction kinetics is accelerated. Here, ab initio molecular dynamics simulation reveals rapid hydrogen production from water by a cluster (or superatom) consisting of a magic number of aluminum atoms, Al{n} (for instance, n=12 or 17). We find a low activation-barrier mechanism, in which a pair of Lewi...
متن کاملMolecular dynamics simulations of the melting of aluminum nanoparticles.
Molecular dynamics simulations are performed to determine the melting points of aluminum nanoparticles of 55-1000 atoms with the Streitz-Mintmire [Phys. Rev. B 1994, 50, 11996] variable-charge electrostatic plus potential. The melting of the nanoparticles is characterized by studying the temperature dependence of the potential energy and Lindemann index. Nanoparticles with less than 850 atoms s...
متن کاملAb initio molecular dynamics simulations of Aluminum solvation
The solvation of Al3+ and its hydrolyzed species in water clusters has been studied by means of ab initio molecular dynamics simulations. The hexa-hydrate Al(H2O) 3+ 6 ion formed a stable complex in the finite temperature cluster simulation of one aluminum ion and 16 waters. The average dipole moment of strongly polarized hydrated water molecules in the first solvation shell of Al(H2O) 3+ 6 was...
متن کاملMechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects
Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry C
سال: 2016
ISSN: 1932-7447,1932-7455
DOI: 10.1021/acs.jpcc.6b01802