Mixed-State Localization Operators: Cohen’s Class and Trace Class Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace class operators and Hilbert-Schmidt operators

If X,Y are normed spaces, let B(X,Y ) be the set of all bounded linear maps X → Y . If T : X → Y is a linear map, I take it as known that T is bounded if and only if it is continuous if and only if E ⊆ X being bounded implies that T (E) ⊆ Y is bounded. I also take it as known that B(X,Y ) is a normed space with the operator norm, that if Y is a Banach space then B(X,Y ) is a Banach space, that ...

متن کامل

Necessary Conditions for Schatten Class Localization Operators

We study time-frequency localization operators of the form A12 a , where a is the symbol of the operator and φ1, φ2 are the analysis and synthesis windows, respectively. It is shown in [3] that a sufficient condition for A12 a ∈ Sp(L(R)), the Schatten class of order p, is that a belongs to the modulation space Mp,∞(R2d) and the window functions to the modulation space M1. Here we prove a partia...

متن کامل

A Simple Characterization of the Trace - Class of Operators

The trace-class (Tc) of operators on a Hilbert space is characterized in terms of existence of certain centralizers. KEY WO.Rt)S., AI. PHPASES. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODE3. 47BI0, 46K15.

متن کامل

Trace Class Conditions for Functions of Schrödinger Operators

We consider the difference f(−∆+V )−f(−∆) of functions of Schrödinger operators in L(R) and provide conditions under which this difference is trace class. We are particularly interested in non-smooth functions f and in V belonging only to some L space. This is motivated by applications in mathematical physics related to Lieb–Thirring inequalities. We show that in the particular case of Schrödin...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2019

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-019-09663-3