Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic Engineering of Saccharomyces cerevisiae for Polyhydroxybutyrate Production

Establishing industrial biotechnology for the production of chemical compounds from the biosynthetic pathway has received a significant boost with the implementation of metabolic engineering. At present, metabolic engineering in Saccharomyces cerevisiae gains significant advantages of integration of knowledge acquired through a long history of use and data acquisition from novel –omics technolo...

متن کامل

Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production.

Biological production of terminal alkenes has garnered a significant interest due to their industrial applications such as lubricants, detergents and fuels. Here, we engineered the yeast Saccharomyces cerevisiae to produce terminal alkenes via a one-step fatty acid decarboxylation pathway and improved the alkene production using combinatorial engineering strategies. In brief, we first character...

متن کامل

Metabolic Engineering of Saccharomyces cerevisiae for Caffeine and Theobromine Production

Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g., tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the bios...

متن کامل

Metabolic engineering of glycerol production in Saccharomyces cerevisiae.

Inactivation of TPI1, the Saccharomyces cerevisiae structural gene encoding triose phosphate isomerase, completely eliminates growth on glucose as the sole carbon source. In tpi1-null mutants, intracellular accumulation of dihydroxyacetone phosphate might be prevented if the cytosolic NADH generated in glycolysis by glyceraldehyde-3-phosphate dehydrogenase were quantitatively used to reduce dih...

متن کامل

Metabolic engineering of Saccharomyces cerevisiae.

Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Bioengineering and Biotechnology

سال: 2020

ISSN: 2296-4185

DOI: 10.3389/fbioe.2020.588255