LYAPUNOV-TYPE INEQUALITY FOR EXTREMAL PUCCI’S EQUATIONS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

Lyapunov-type inequality for a class of even-order differential equations

where a, b Î R with a <b, and the constant 4 cannot be replaced by a larger number, where and in the sequel q(t) = max{q(t), 0}. Since then, there are many improvements and generalizations of (1.2) in some literatures. Especially, Lyapunov inequality has been generalized extensively to the higher-order linear equations and the linear Hamiltonian systems. A thorough literature review of continuo...

متن کامل

Lyapunov-type Inequalities for Differential Equations

Let us consider the linear boundary value problem u′′(x) + a(x)u(x) = 0, x ∈ (0, L), u′(0) = u′(L) = 0, (0.1) where a ∈ Λ0 and Λ0 is defined by Λ0 = {a ∈ L∞(0, L) \ {0} : Z L 0 a(x) dx ≥ 0, (0.1) has nontrivial solutions}. Classical Lyapunov inequality states that Z L 0 a(x) dx > 4/L for any function a ∈ Λ0, where a(x) = max{a(x), 0}. The constant 4/L is optimal. Let us note that Lyapunov inequ...

متن کامل

Lyapunov-type inequality for a class of quasilinear systems

In this paper, we establish a new Lyapunov-type inequality for quasilinear systems. Our result in special case reduces to the result of Watanabe et al. [J. Inequal. Appl. 242(2012), 1–8]. As an application, we also obtain lower bounds for the eigenvalues of corresponding systems.

متن کامل

Generalization of the Lyapunov type inequality for pseudo-integrals

We prove two kinds of Lyapunov type inequalities for pseudo-integrals. One discusses pseudo-integrals where pseudo-operations are given by a monotone and continuous function g. The other one focuses on the pseudo-integrals based on a semiring 0; 1 ½ Š; sup; ð Þ , where the pseudo-multiplication is generated. Some examples are given to illustrate the validity of these inequalities. As a generali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 2020

ISSN: 1446-7887,1446-8107

DOI: 10.1017/s1446788719000569