Lossless and high-resolution RF photonic notch filter
نویسندگان
چکیده
منابع مشابه
CMOS RF Notch Filter for GNSS Receivers
Bandpass sampling architectures, also called subsampling architectures, exhibit several advantages over super-het architectures. First, the complexity of subsampling architectures is significantly lower since no Phased-Locked-Loop (PLL) is required. A direct consequence is that downconversion from RF to IF can be achieved with significant power savings as compared to the super-het architecture....
متن کاملOpto-VLSI-based reconfigurable photonic RF filter
Radio frequency (RF) signal processors based on photonics have several advantages, such as broadband capability, immunity to electromagnetic interference, flexibility, and light weight in comparison to all-electronics RF filters. It still requires innovative research and development to achieve high-resolution reconfigurable photonic RF signal processors featuring high selectivity, resolution, w...
متن کاملSoftware-defined microwave photonic filter with high reconfigurable resolution
Microwave photonic filters (MPFs) are of great interest in radio frequency systems since they provide prominent flexibility on microwave signal processing. Although filter reconfigurability and tunability have been demonstrated repeatedly, it is still difficult to control the filter shape with very high precision. Thus the MPF application is basically limited to signal selection. Here we presen...
متن کاملAvoided-crossing-based liquid-crystal photonic-bandgap notch filter.
We demonstrate a highly tunable deep notch filter realized in a liquid-crystal photonic-bandgap (LCPBG) fiber. The filter is realized without inducing a long-period grating in the fiber but simply by filling a solid-core photonic-crystal fiber with a liquid crystal and exploiting avoided crossings within the bandgap of the LCPBG fiber. The filter is demonstrated experimentally and investigated ...
متن کاملHigh-Resolution Indoor RF Ranging
Our recently developed indoor RF Ranging technology allows new levels of accurate indoor localization based on carrier-phase measurements. Measuring the phase difference over multiple frequencies, and combining it with a novel multipath angle-of-arrival differentiation technique, we achieving accuracies of a few centimeters in direct line of sight, and a few tens of centimeters in non-direct li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Letters
سال: 2016
ISSN: 0146-9592,1539-4794
DOI: 10.1364/ol.41.005306