Locally symmetric Einstein-Kaehler manifolds and spectral geometry

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally symmetric submanifolds lift to spectral manifolds

In this work we prove that every locally symmetric smooth submanifoldM of Rn gives rise to a naturally defined smooth submanifold of the space of n × n symmetric matrices, called spectral manifold, consisting of all matrices whose ordered vector of eigenvalues belongs toM. We also present an explicit formula for the dimension of the spectral manifold in terms of the dimension and the intrinsic ...

متن کامل

The Spectral Geometry of Einstein Manifolds with Boundary

Let (M, g) be a compact Einstein manifold with smooth boundary. Let ∆p,B be the realization of the p form valued Laplacian with a suitable boundary condition B. Let Spec(∆p,B) be the spectrum where each eigenvalue is repeated according to multiplicity. We show that certain geometric properties of the boundary may be spectrally characterized in terms of this data where we fix the Einstein constant.

متن کامل

Counting Locally Symmetric Manifolds

We give quantitive estimates for the number of locally symmetric spaces of a given type with bounded volume. Explicitly, let S be a symmetric space of non-compact type without Euclidean de Rham factors. Then, after rescaling appropriately the Riemannian metric, the following hold. Theorem A If rank(S) = 1 and S ≇ H2,H3, then there are at most V V Riemannian manifolds, locally isometric to S, wi...

متن کامل

Isospectral locally symmetric manifolds

In this article we construct closed, isospectral, non-isometric locally symmetric manifolds. We have three main results. First, we construct arbitrarily large sets of closed, isospectral, non-isometric manifolds. Second, we show the growth of size these sets of isospectral manifolds as a function of volume is super-polynomial. Finally, we construct pairs of infinite towers of finite covers of a...

متن کامل

Einstein Manifolds and Contact Geometry

We show that every K-contact Einstein manifold is Sasakian-Einstein and discuss several corollaries of this result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1979

ISSN: 0040-8735

DOI: 10.2748/tmj/1178229843