Lifting automorphic representations on the double covers of orthogonal groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifting Automorphic Representations on the Double Covers of Orthogonal Groups

Suppose that G and H are connected reductive groups over a number field F and that an L-homomorphism ρ : LG −→ LH is given. The Langlands functoriality conjecture predicts the existence of a map from the automorphic representations of G(A) to those of H(A). If the adelic points of the algebraic groups G, H are replaced by their metaplectic covers, one may hope to specify an analogue of the Lgro...

متن کامل

On Cartesian Products of Orthogonal Double Covers

Let H be a graph on n vertices and G a collection of n subgraphs of H, one for each vertex, where G is an orthogonal double cover (ODC) of H if every edge of H occurs in exactly two members of G and any two members share an edge whenever the corresponding vertices are adjacent in H and share no edges whenever the corresponding vertices are nonadjacent in H. In this paper, we are concerned with ...

متن کامل

Lifting Representations of Z - Groups

Let K be the kernel of an epimorphism G→ Z, where G is a finitely presented group. If K has infinitely many subgroups of index 2, 3 or 4, then it has uncountably many. Moreover, if K is the commutator subgroup of a classical knot group G, then any homomorphism from K onto the symmetric group S2 (resp. Z3) lifts to a homomorphism onto S3 (resp. alternating group A4).

متن کامل

Orthogonal double covers of complete bipartite graphs

Let H = {A1, . . . , An, B1, . . . , Bn} be a collection of 2n subgraphs of the complete bipartite graph Kn,n. The collection H is called an orthogonal double cover (ODC) of Kn,n if each edge of Kn,n occurs in exactly two of the graphs in H; E(Ai) ∩ E(Aj) = φ = E(Bi) ∩ E(Bj) for every i, j ∈ {1, . . . , n} with i = j, and for any i, j ∈ {1, . . . , n}, |E(Ai)∩E(Bj)| = 1. If Ai ∼= G ∼= Bi for al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2006

ISSN: 0012-7094

DOI: 10.1215/s0012-7094-06-13126-5