LiCoO2-Based Fiber Cathodes for Electrospun Full Cell Li-ion Batteries
نویسندگان
چکیده
منابع مشابه
Anion-redox nanolithia cathodes for Li-ion batteries
The development of lithium–air batteries is plagued by a high potential gap (>1.2V) between charge and discharge, and poor cyclability due to the drastic phase change of O2 (gas) and O (condensed phase) at the cathode during battery operations. Here we report a cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide, enabling charge/discharge between solid Li2O/...
متن کاملFreestanding graphene/MnO2 cathodes for Li-ion batteries
Different polymorphs of MnO2 (α-, β-, and γ-) were produced by microwave hydrothermal synthesis, and graphene oxide (GO) nanosheets were prepared by oxidation of graphite using a modified Hummers' method. Freestanding graphene/MnO2 cathodes were manufactured through a vacuum filtration process. The structure of the graphene/MnO2 nanocomposites was characterized using X-ray diffraction (XRD) and...
متن کاملEffect of LiCoO2 Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries
Effect of LiCoO2 Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries Minki Jo, Young-Sik Hong, Jaebum Choo, and Jaephil Cho* Division of Energy Engineering, Ulsan National Institute of Science & Technology, Ulsan 689-805, Korea Department of Science Education, Seoul National University of Education, Seoul 137-742, Korea Department of Applied Chemistry, Hanyang University, An...
متن کاملHigh Areal Capacity Si/LiCoO2 Batteries from Electrospun Composite Fiber Mats.
Freestanding nanofiber mat Li-ion battery anodes containing Si nanoparticles, carbon black, and poly(acrylic acid) (Si/C/PAA) are prepared using electrospinning. The mats are compacted to a high fiber volume fraction (≈0.85), and interfiber contacts are welded by exposing the mat to methanol vapor. A compacted+welded fiber mat anode containing 40 wt % Si exhibits high capacities of 1484 mA h g-...
متن کاملNanoarchitectured 3D cathodes for Li-ion microbatteries.
Rechargeable lithium ion batteries, due to their high energy density and design fl exibility, are the vital power sources for a variety of modern portable electronic devices and are the prime candidates to power next generation of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). [ 1 ] With a rich and versatile chemistry leading to a wide range of electrode materials, severa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochimica Acta
سال: 2016
ISSN: 0013-4686
DOI: 10.1016/j.electacta.2016.08.033