Lichnerowicz-Obata Estimate, Almost Parallel p-form and Almost Product Manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projective Lichnerowicz-Obata Conjecture

We solve two classical conjectures by showing that if an action of a connected Lie group on a complete Riemannian manifold preserves the geodesics (considered as unparameterized curves), then the metric has constant positive sectional curvature, or the group acts by affine transformations.

متن کامل

Curvature relations in almost product manifolds

New relations involving curvature components for the various connections appearing in the theory of almost product manifolds are given and the conformal behaviour of these connections are studied. New identities for the irreducible parts of the deformation tensor are derived. Some direct physical applications in Kaluza–Klein and gauge theory are discussed. [email protected] [email protected]

متن کامل

Lichnerowicz and Obata Theorems for Foliations

The standard Lichnerowicz comparison theorem states that if the Ricci curvature of a closed, Riemannian n-manifold M satisfies Ric (X,X) ≥ a (n − 1) |X| for every X ∈ TM for some fixed a > 0, then the smallest positive eigenvalue λ of the Laplacian satisfies λ ≥ an. The Obata theorem states that equality occurs if and only if M is isometric to the standard n-sphere of constant sectional curvatu...

متن کامل

Almost Complex and Almost Product Einstein Manifolds from a Variational Principle

It is shown that the first order (Palatini) variational principle for a generic nonlinear metric-affine Lagrangian depending on the (symmetrized) Ricci square invariant leads to an almost-product Einstein structure or to an almost-complex anti-Hermitian Einstein structure on a manifold. It is proved that a real anti-Hermitian metric on a complex manifold satisfies the Kähler condition on the sa...

متن کامل

almost-quaternionic Hermitian manifolds

In this note we prove that if the fundamental 4-form of an almost-quaternionic Hermitian manifold (M,Q, g) of dimension 4n ≥ 8 satisfies the conformal-Killing equation, then (M,Q, g) is quaternionic-Kähler.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Geometric Analysis

سال: 2021

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-021-00670-9