Latent Gaussian Count Time Series

نویسندگان

چکیده

This paper develops the theory and methods for modeling a stationary count time series via Gaussian transformations. The techniques use latent process distributional transformation to construct with very flexible correlation features that can have any pre-specified marginal distribution, including classical Poisson, generalized negative binomial, binomial structures. pseudo-likelihood implied Yule-Walker estimation paradigms, based on autocovariance function of series, are developed new Hermite expansion. Particle filtering sequential Monte Carlo used conduct likelihood estimation. Connections state space models made. Our approaches evaluated in simulation study analyze weekly retail sales.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphical Gaussian modelling of multivariate time series with latent variables

In time series analysis, inference about causeeffect relationships among multiple times series is commonly based on the concept of Granger causality, which exploits temporal structure to achieve causal ordering of dependent variables. One major problem in the application of Granger causality for the identification of causal relationships is the possible presence of latent variables that affect ...

متن کامل

Count Time Series Models

We review regression models for count time series. We discuss the approach which is based on generalized linear models and the class of integer autoregressive processes. The generalized linear models framework provides convenient tools for implementing model fitting and prediction using standard software. Furthermore, this approach provides a natural extension to the traditional ARMA methodolog...

متن کامل

Bayesian nonparametric predictions for count time series

In this paper we introduce a Bayesian nonparametric methodology for producing coherent predictions of count time series using the INAR(1) process. Our predictions are based on estimates of the p-step ahead predictive mass functions assuming a nonparametric prior for the distribution of the error term having large support on the space of discrete probability mass functions. An efficient Gibbs sa...

متن کامل

Coherent Predictions of Low Count Time Series

The application of traditional forecasting methods to discrete count data yields forecasts that are non-coherent. That is, such methods produce non-integer point and interval predictions which violate the restrictions on the sample space of the integer variable. This paper presents a methodology for producing coherent forecasts of low count time series. The forecasts are based on estimates of t...

متن کامل

Gaussian Process Latent Variable Models for Dimensionality Reduction and Time Series Modeling

Time series data of high dimensions are frequently encountered in fields like robotics, computer vision, economics and motion capture. In this survey paper we look first at Gaussian Process Latent Variable Model (GPLVM) which is a probabilistic nonlinear dimensionality reduction method. Further we discuss Gaussian Process Dynamical Model (GPDMs) which are based GPLVM. GPDM is a probabilistic ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2021

ISSN: ['0162-1459', '1537-274X', '2326-6228', '1522-5445']

DOI: https://doi.org/10.1080/01621459.2021.1944874