Kummer′s Criterion over Global Function Fields
نویسندگان
چکیده
منابع مشابه
Multiple Zeta Values over Global Function Fields
Abstract. Let K be a global function field with finite constant field Fq of order q. In this paper we develop the analytic theory of a multiple zeta function Zd(K; s1, . . . , sd) in d independent complex variables defined over K. This is the function field analog of the Euler-Zagier multiple zeta function ζd(s1, . . . , sd) of depth d ([Z1]). Our main result is that Zd(K; s1, . . . , sd) has a...
متن کاملWitt Equivalence of Function Fields over Global Fields
Witt equivalent fields can be understood to be fields having the same symmetric bilinear form theory. Witt equivalence of finite fields, local fields and global fields is well understood. Witt equivalence of function fields of curves defined over archimedean local fields is also well understood. In the present paper, Witt equivalence of general function fields over global fields is studied. It ...
متن کاملStrict avalanche criterion over finite fields
Boolean functions on GF (2) which satisfy the Strict Avalanche Criterion (SAC) play an important role in the art of information security. In this paper, we extend the conception SAC to finite fields GF (p). A necessary and sufficient condition is given by using spectral analysis. Also, based on an interesting permutation polynomial theorem, we prove various facts about (n − 1)-th order SAC func...
متن کاملFiniteness properties of soluble arithmetic groups over global function fields
Let G be a Chevalley group scheme and B ≤ G a Borel subgroup scheme, both defined over Z. Let K be a global function field, S be a finite non-empty set of places over K , and OS be the corresponding S–arithmetic ring. Then, the S– arithmetic group B(OS) is of type F |S|−1 but not of type FP |S| . Moreover one can derive lower and upper bounds for the geometric invariants Σ(B(OS)). These are sha...
متن کاملIwasawa Theory of Zp-Extensions over Global Function Fields
In this paper we study the Iwasawa theory of Zp-extensions of global function fields k over finite fields of characteristic p. When d = 1 we first show that Iwasawa invariants are well defined under the assumption that only finitely many primes are ramified in the extension, then we prove that the Iwasawa μ-invariant can be arbitrarily large for some extension of any given base field k. After g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1994
ISSN: 0022-314X
DOI: 10.1006/jnth.1994.1098