Invariant Radon measures on measured lamination space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. D S ] 3 1 D ec 2 00 7 INVARIANT RADON MEASURES ON MEASURED LAMINATION SPACE

Let S be an oriented surface of genus g ≥ 0 with m ≥ 0 punctures and 3g − 3 + m ≥ 2. We classify all Radon measures on the space of measured geodesic laminations which are invariant under the action of the mapping class group of S.

متن کامل

Invariant Radon Measures for Horocycle Flows on Abelian Covers

We classify the ergodic invariant Radon measures for horocycle flows on Zd–covers of compact Riemannian surfaces of negative curvature, thus proving a conjecture of M. Babillot and F. Ledrappier. An important tool is a result in the ergodic theory of equivalence relations concerning the reduction of the range of a cocycle by the addition of a coboundary.

متن کامل

On the space of ergodic invariant measures of unipotent flows

Let G be a Lie group and Γ be a discrete subgroup. We show that if {μn} is a convergent sequence of probability measures on G/Γ which are invariant and ergodic under actions of unipotent one-parameter subgroups, then the limit μ of such a sequence is supported on a closed orbit of the subgroup preserving it, and is invariant and ergodic for the action of a unipotent one-parameter subgroup of G.

متن کامل

Quasi-invariant measures on the path space of a diffusion

The author has previously constructed a class of admissible vector fields on the path space of an elliptic diffusion process x taking values in a closed compact manifold. In this Note the existence of flows for this class of vector fields is established and it is shown that the law of x is quasi-invariant under these flows. Résumé L’auteur a précédemment construit une classe de champs de vecteu...

متن کامل

Measured Lamination Spaces for 3-Manifolds

One of Thurston’s important contributions to surface theory is his construction of measured lamination spaces. These spaces originally arose because their projectivizations form natural boundaries for Teichmüller spaces, but they are also of interest purely topologically. For example, they provide a nice global framework in which to view all the isotopy classes of simple closed curves in a surf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones mathematicae

سال: 2008

ISSN: 0020-9910,1432-1297

DOI: 10.1007/s00222-008-0163-5