Instability of the standing waves for the nonlinear Klein-Gordon equations in one dimension
نویسندگان
چکیده
In this paper, we consider the nonlinear Klein-Gordon equation ∂ t u − mathvariant="normal">Δ<!-- Δ <mml:mo>+ = | p 1 , ∈<!-- ∈ mathvariant="double-struck">R x d \begin{align*} \partial _{tt}u-\Delta u+u=|u|^{p-1}u,\qquad t\in \mathbb {R},\ x\in {R}^d, \end{align*} with > 4 encoding="application/x-tex">1>p> 1+\frac {4}{d} . The has standing wave solutions alttext="u omega e i phi omega"> ω<!-- ω <mml:mi>e i ϕ<!-- ϕ encoding="application/x-tex">u_\omega =e^{i\omega t}\phi _{\omega } frequency alttext="omega left-parenthesis negative right-parenthesis"> stretchy="false">( stretchy="false">) encoding="application/x-tex">\omega \in (-1,1) , where alttext="phi encoding="application/x-tex">\phi is solution of squared right-parenthesis 0 period 2 0. -\Delta \phi +(1-\omega ^2)\phi -\phi ^p=0. It was proved by Shatah [Comm. Math. Phys. 91 (1983), pp. 313–327], and Shatah-Strauss 100 (1985), 173–190] that there exists a critical c c 0 _c\in (0,1) such waves encoding="application/x-tex">u_\omega orbitally stable when 1"> _c>|\omega |>1 unstable alttext="StartAbsoluteValue c"> encoding="application/x-tex">|\omega |>\omega _c Furthermore, strong instability for |=\omega in high dimensions alttext="d greater-than-or-equal-to 2"> ≥<!-- ≥ encoding="application/x-tex">d\ge 2 Ohta-Todorova [SIAM J. Anal. 38 (2007), 1912–1931]. settle only remaining problem alttext="p encoding="application/x-tex">p> 1 encoding="application/x-tex">d=1 which case prove unstable.
منابع مشابه
Strong Instability of Standing Waves for Nonlinear Klein-gordon Equations
The strong instability of ground state standing wave solutions eφω(x) for nonlinear Klein-Gordon equations has been known only for the case ω = 0. In this paper we prove the strong instability for small frequency ω.
متن کاملStrong instability of standing waves for nonlinear Klein-Gordon equation and Klein-Gordon-Zakharov system
The orbital instability of ground state standing waves eφω(x) for the nonlinear Klein-Gordon equation has been known in the domain of all frequencies ω for the supercritical case and for frequencies strictly less than a critical frequency ωc in the subcritical case. We prove the strong instability of ground state standing waves for the entire domain above. For the case when the frequency is equ...
متن کاملInstability for Standing Waves of Nonlinear Klein-gordon Equations via Mountain-pass Arguments
We introduce mountain-pass type arguments in the context of orbital instability for Klein-Gordon equations. Our aim is to illustrate on two examples how these arguments can be useful to simplify proofs and derive new results of orbital stability/instability. For a power-type nonlinearity, we prove that the ground states of the associated stationary equation are minimizers of the functional acti...
متن کاملStrong instability of solitary waves for nonlinear Klein-Gordon equations and generalized Boussinesq equations
We study here instability problems of standing waves for the nonlinear Klein-Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave’s frequency or the wave’s speed of propagation and on the nonlinearity.
متن کاملInstability of standing waves for nonlinear Klein-Gordon equation and related system
From the result of Ginibre and Velo ([9]) the Cauchy problem for (1) is locally wellposed in the energy space X := H1(RN)×L2(RN). Thus for any (u0, u1) ∈ X there exists a unique solution ~u := (u, ∂tu) ∈ C([0, Tmax); X) of (1) with ~u(0) = (u0, u1) such that either Tmax = ∞ (global existence) or Tmax < ∞ and limt→Tmax ‖~u(t)‖X = ∞ (finite time blowup). Moreover, the solution u(t) satisfies the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2023
ISSN: ['2330-0000']
DOI: https://doi.org/10.1090/tran/8852