Inference and Specification Testing in Threshold Regression with Endogeneity
نویسندگان
چکیده
منابع مشابه
Testing linearity against threshold effects: uniform inference in quantile regression
This paper develops a uniform test of linearity against thresholds effects in the quantile regression framework. The test is based on the supremum of the Wald process over the space of quantile and threshold parameters. We establish the asymptotic null distribution of the test statistic for stationary weakly dependent processes, and propose a simulation method to approximate the critical values...
متن کاملSpecification and Inference in Nonparametric Additive Regression
This article revisits the Bayesian inferential problem for the class of nonparametric additive models. A new identification scheme for the unknown covariate functions is proposed and contrasted with existing approaches, and is used to develop an efficient Markov chain Monte Carlo estimation algorithm. Building upon the identification scheme, the resulting estimation procedure, and a class of pr...
متن کاملQuantile Regression with Censoring and Endogeneity
In this paper, we develop a new censored quantile instrumental variable (CQIV) estimator and describe its properties and computation. The CQIV estimator combines Powell (1986) censored quantile regression (CQR) to deal semiparametrically with censoring, with a control variable approach to incorporate endogenous regressors. The CQIV estimator is obtained in two stages that are nonadditive in the...
متن کاملNonparametric Threshold Regression: Estimation and Inference∗
The present work describes a simple approach to estimating the location of a threshold/change point in a nonparametric regression. This model has connections both to the time-series and regression discontinuity literatures. The estimator leverages a simple decomposition, giving it the form of a semiparametric smooth coefficient model. Optimal bandwidth selection and a suite of testing facilitie...
متن کاملEstimation , Inference , and Specification Testing for Possibly
To date the literature on quantile regression and least absolute deviation regression has assumed either explicitly or implicitly that the conditional quantile regression model is correctly specified. When the model is misspecified, confidence intervals and hypothesis tests based on the conventional covariance matrix are invalid. Although misspecification is a generic phenomenon and correct spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2019
ISSN: 1556-5068
DOI: 10.2139/ssrn.3499015