Impulsive fractional quantum Hahn difference boundary value problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic boundary value problems for nonlinear impulsive fractional differential equation

In this paper, we investigate the existence and uniqueness of solution of the periodic boundary value problem for nonlinear impulsive fractional differential equation involving Riemann-Liouville fractional derivative by using Banach contraction principle.

متن کامل

Boundary Value Problems for First Order Impulsive Difference Equations ∗

In this paper, first order impulsive difference equations with linear boundary conditions are discussed. By using a new comparison theorem and the method of upper and lower solutions coupled with the monotone iterative technique, criteria on the existence of minimal and maximal solutions are obtained. AMS subject classification: 34D20, 34A37.

متن کامل

Nontrivial solutions for fractional q-difference boundary value problems

In this paper, we investigate the existence of nontrivial solutions to the nonlinear q-fractional boundary value problem (D q y)(x) = −f(x, y(x)), 0 < x < 1, y(0) = 0 = y(1), by applying a fixed point theorem in cones.

متن کامل

On Impulsive Boundary Value Problems of Fractional Differential Equations with Irregular Boundary Conditions

and Applied Analysis 3 To prove the existence of solutions of problem 1.1 , we need the following fixed-point theorems. Theorem 2.2 see 51 . Let E be a Banach space. Assume that Ω is an open bounded subset of E with θ ∈ Ω and let T : Ω → E be a completely continuous operator such that ‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ω. 2.3 Then T has a fixed point in Ω. Lemma 2.3 see 1 . For α > 0, the general solution of fr...

متن کامل

Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects

Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2019

ISSN: 1687-1847

DOI: 10.1186/s13662-019-2156-7