High order symmetry interference lithography based nanoimprint
نویسندگان
چکیده
منابع مشابه
Nanoimprint lithography
Nowadays, nanodevices like small fluidic channels, semiconductor lasers, nano contacts for solar cells, nano magnets or nano antennas for infrared detection (THz) are of great interest. The applications for these devices extend the fields of e.g. energy, computational or medical sciences. For example, by arranging nano dots consisting of a magnetic material, logical circuits can be designed whi...
متن کاملNanoimprint Lithography
The Nanoimprint lithography (NIL) is a novel method of fabricating micro/nanometer scale patterns with low cost, high throughput and high resolution (Chou et al., 1996). Unlike traditionally optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the...
متن کاملScalable, high performance, enzymatic cathodes based on nanoimprint lithography
Here we detail high performance, enzymatic electrodes for oxygen bio-electroreduction, which can be easily and reproducibly fabricated with industry-scale throughput. Planar and nanostructured electrodes were built on biocompatible, flexible polymer sheets, while nanoimprint lithography was used for electrode nanostructuring. To the best of our knowledge, this is one of the first reports concer...
متن کاملSiloxane Copolymers for Nanoimprint Lithography**
Nanoimprint lithography (NIL) is a fabrication technology that offers high-throughput, ultrahigh resolution patterning at great cost savings compared to most competing next-generation radiative lithography methods. As a result of its rapid development in the past decade and its potential for sub-100 nm lithography, NIL has been listed by MIT’s Technology Review as one of ten emerging technologi...
متن کاملNanoimprint lithography for nanodevice fabrication
Nanoimprint lithography (NIL) is a compelling technique for low cost nanoscale device fabrication. The precise and repeatable replication of nanoscale patterns from a single high resolution patterning step makes the NIL technique much more versatile than other expensive techniques such as e-beam or even helium ion beam lithography. Furthermore, the use of mechanical deformation during the NIL p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2011
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.3530729