Hierarchical Bayes, maximum a posteriori estimators, and minimax concave penalized likelihood estimation
نویسندگان
چکیده
منابع مشابه
Confidence Sets Based on Penalized Maximum Likelihood Estimators
Confidence intervals based on penalized maximum likelihood estimators such as the LASSO, adaptive LASSO, and hard-thresholding are analyzed. In the known-variance case, the finite-sample coverage properties of such intervals are determined and it is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the hard-thresholding estimator is larger than the l...
متن کاملA Penalized Nonparametric Maximum Likelihood Approach to Species Richness Estimation
We propose a class of penalized nonparametric maximum likelihood estimators (NPMLEs) for the species richness problem. We use a penalty term on the likelihood because likelihood estimators that lack it have an extreme instability problem. The estimators are constructed using a conditional likelihood that is simpler than the full likelihood. We show that the full-likelihood NPMLE solution given ...
متن کاملMaximum penalized likelihood estimation in a gamma-frailty model.
The shared frailty models allow for unobserved heterogeneity or for statistical dependence between observed survival data. The most commonly used estimation procedure in frailty models is the EM algorithm, but this approach yields a discrete estimator of the distribution and consequently does not allow direct estimation of the hazard function. We show how maximum penalized likelihood estimation...
متن کاملMaximum likelihood estimation of a multi- dimensional log-concave density
Let X1, . . . ,Xn be independent and identically distributed random vectors with a (Lebesgue) density f. We first prove that, with probability 1, there is a unique log-concave maximum likelihood estimator f̂n of f. The use of this estimator is attractive because, unlike kernel density estimation, the method is fully automatic, with no smoothing parameters to choose. Although the existence proof ...
متن کاملMaximum likelihood, profile likelihood, and penalized likelihood: a primer.
The method of maximum likelihood is widely used in epidemiology, yet many epidemiologists receive little or no education in the conceptual underpinnings of the approach. Here we provide a primer on maximum likelihood and some important extensions which have proven useful in epidemiologic research, and which reveal connections between maximum likelihood and Bayesian methods. For a given data set...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2013
ISSN: 1935-7524
DOI: 10.1214/13-ejs795