Heat kernel upper bounds for symmetric Markov semigroups
نویسندگان
چکیده
It is well known that Nash-type inequalities for symmetric Dirichlet forms are equivalent to on-diagonal heat kernel upper bounds the associated Markov semigroups. In this paper, we show both imply (and hence to) off-diagonal under some mild assumptions. Our approach based on a new generalized Davies' method. results extend of [6] with power order considerably and also [26] second differential operators complete non-compact manifold.
منابع مشابه
Gaussian Upper Bounds for the Heat Kernel on Arbitrary Manifolds
The history of the heat kernel Gaussian estimates started with the works of Nash [25] and Aronson [2] where the double-sided Gaussian estimates were obtained for the heat kernel of a uniformly parabolic equation in IR in a divergence form (see also [15] for improvement of the original Nash’s argument and [26] for a consistent account of the Aronson’s results and related topics). In particular, ...
متن کاملHeat Kernel Upper Bounds for Interacting Particle Systems
We show a diffusive upper bound on the transition probability of a tagged particle in the symmetric simple exclusion process. The proof relies on optimal spectral gap estimates for the dynamics in finite volume, which are of independent interest. We also show off-diagonal estimates of Carne-Varopoulos type. MSC 2010: 82C22, 35B65, 60K35.
متن کاملUpper and lower bounds of symmetric division deg index
Symmetric Division Deg index is one of the 148 discrete Adriatic indices that showed good predictive properties on the testing sets provided by International Academy of Mathematical Chemistry. Symmetric Division Deg index is defined by $$ SDD(G) = sumE left( frac{min{d_u,d_v}}{max{d_u,d_v}} + frac{max{d_u,d_v}}{min{d_u,d_v}} right), $$ where $d_i$ is the degree of vertex $i$ in graph $G$. In th...
متن کاملHeat Kernel Upper Bounds on Long Range Percolation Clusters
In this paper, we derive upper bounds for the heat kernel of the simple random walk on the infinite cluster of a supercritical long range percolation process. For any d ≥ 1 and for any exponent s ∈ (d, (d + 2) ∧ 2d) giving the rate of decay of the percolation process, we show that the return probability decays like t− /s−d up to logarithmic corrections, where t denotes the time the walk is run....
متن کاملUpper bounds for the dimension of moduli spaces of curves with symmetric Weierstrass semigroups
We present an explicit method to produce upper bounds for the dimension of the moduli spaces of complete integral Gorenstein curves with prescribed symmetric Weierstrass semigroups.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2021
ISSN: ['0022-1236', '1096-0783']
DOI: https://doi.org/10.1016/j.jfa.2021.109074