Gorenstein‐projective modules over short local algebras
نویسندگان
چکیده
Following the well-established terminology in commutative algebra, any (not necessarily commutative) finite-dimensional local algebra A $A$ with radical J $J$ will be said to short provided 3 = 0 $J^3 0$ . As case, we show: If a has an indecomposable non-projective Gorenstein-projective module M $M$ , then either is self-injective (so that all modules are Gorenstein-projective) and then, of course, | 2 ⩽ 1 $|J^2| \leqslant 1$ or else / − |J/J^2| - $|JM| |J^2||M/JM|$ More generally, focus attention semi-Gorenstein-projective ∞ $\infty$ -torsionfree modules, even ℧ $\mho$ -paths length 2, 4. In particular, show existence reflexive implies < |J/J^2|$ further restrictions. addition, consider exact complexes projective image. Again, as see if such complex exists, satisfies condition Also, Ext ( ) ≠ $\operatorname{Ext}^1(M,M) \ne this way, prove Auslander-Reiten conjecture (one classical homological conjectures) for arbitrary algebras. Many arguments used case actually work general, but there interesting differences some our results may new also case.
منابع مشابه
On the Finsler modules over H-algebras
In this paper, applying the concept of generalized A-valued norm on a right $H^*$-module and also the notion of ϕ-homomorphism of Finsler modules over $C^*$-algebras we first improve the definition of the Finsler module over $H^*$-algebra and then define ϕ-morphism of Finsler modules over $H^*$-algebras. Finally we present some results concerning these new ones.
متن کاملHilbert modules over pro-C*-algebras
In this paper, we generalize some results from Hilbert C*-modules to pro-C*-algebra case. We also give a new proof of the known result that l2(A) is aHilbert module over a pro-C*-algebra A.
متن کاملPoint modules over Sklyanin algebras
Definition 1.1 [5] Fix a degree n line bundle ~ on E. Set V = H ~ (E, ~ ) . Identify V| with H~174 Define the shifted diagonal A~:={(x,x+ (n-2)r) lx~E}. Denote by M the set of fixed points for the involution (x, y) ~ (y + 2r, x 2r) on E • E. We say that a divisor D on E • E is allowable if D is stable under this involution, and M occurs in D with even multiplicity. The n-dimensional Sklyanin al...
متن کاملGeneric modules over artin algebras
Generic modules have been introduced by Crawley-Boevey in order to provide a better understanding of nite dimensional algebras of tame representation type. In fact he has shown that the generic modules correspond to the one-parameter families of indecomposable nite dimensional modules over a tame algebra 5]. The Second Brauer-Thrall Conjecture provides another reason to study generic modules be...
متن کاملMultiplication operators on Banach modules over spectrally separable algebras
Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module. We study the set ${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$. In the case $mathscr{X}=mathcal{A}$, ${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$. We s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2022
ISSN: ['1469-7750', '0024-6107']
DOI: https://doi.org/10.1112/jlms.12577