Gorenstein‐projective modules over short local algebras

نویسندگان

چکیده

Following the well-established terminology in commutative algebra, any (not necessarily commutative) finite-dimensional local algebra A $A$ with radical J $J$ will be said to short provided 3 = 0 $J^3 0$ . As case, we show: If a has an indecomposable non-projective Gorenstein-projective module M $M$ , then either is self-injective (so that all modules are Gorenstein-projective) and then, of course, | 2 ⩽ 1 $|J^2| \leqslant 1$ or else / − |J/J^2| - $|JM| |J^2||M/JM|$ More generally, focus attention semi-Gorenstein-projective ∞ $\infty$ -torsionfree modules, even ℧ $\mho$ -paths length 2, 4. In particular, show existence reflexive implies < |J/J^2|$ further restrictions. addition, consider exact complexes projective image. Again, as see if such complex exists, satisfies condition Also, Ext ( ) ≠ $\operatorname{Ext}^1(M,M) \ne this way, prove Auslander-Reiten conjecture (one classical homological conjectures) for arbitrary algebras. Many arguments used case actually work general, but there interesting differences some our results may new also case.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Finsler modules over H-algebras

In this paper, applying the concept of generalized A-valued norm on a right $H^*$-module and also the notion of ϕ-homomorphism of Finsler modules over $C^*$-algebras we first improve the definition of the Finsler module over $H^*$-algebra and then define ϕ-morphism of Finsler modules over $H^*$-algebras. Finally we present some results concerning these new ones.

متن کامل

Hilbert modules over pro-C*-algebras

In this paper, we generalize some results from Hilbert C*-modules to pro-C*-algebra case. We also give a new proof of the known result that l2(A) is aHilbert module over a pro-C*-algebra A.

متن کامل

Point modules over Sklyanin algebras

Definition 1.1 [5] Fix a degree n line bundle ~ on E. Set V = H ~ (E, ~ ) . Identify V| with H~174 Define the shifted diagonal A~:={(x,x+ (n-2)r) lx~E}. Denote by M the set of fixed points for the involution (x, y) ~ (y + 2r, x 2r) on E • E. We say that a divisor D on E • E is allowable if D is stable under this involution, and M occurs in D with even multiplicity. The n-dimensional Sklyanin al...

متن کامل

Generic modules over artin algebras

Generic modules have been introduced by Crawley-Boevey in order to provide a better understanding of nite dimensional algebras of tame representation type. In fact he has shown that the generic modules correspond to the one-parameter families of indecomposable nite dimensional modules over a tame algebra 5]. The Second Brauer-Thrall Conjecture provides another reason to study generic modules be...

متن کامل

Multiplication operators on Banach modules over spectrally separable algebras

‎Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module‎. ‎We study the set‎ ‎${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$‎. ‎In the case $mathscr{X}=mathcal{A}$‎, ‎${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$‎. ‎We s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2022

ISSN: ['1469-7750', '0024-6107']

DOI: https://doi.org/10.1112/jlms.12577