Global weak solutions to the generalized Proudman-Johnson equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Existence of Solutions to the Proudman{johnson Equation

We show that there is no blowup solutions, for positive viscosity constant , to the equation f xxt f xxxx +ff xxx f x f xx = 0; x 2 (0; 1); t > 0 with (i) periodic boundary condition, or (ii) Dirichlet boundary condition f = f x = 0 or (iii) Neumann boundary condition f = f xx = 0 on the boundary x = 0; 1. Furthermore we show that every solution decays to the trivial steady state as t goes to i...

متن کامل

Blow-up of Solutions to the Generalized Inviscid Proudman-Johnson Equation

For arbitrary values of a parameter λ ∈ R, finite-time blowup of solutions to the generalized, inviscid Proudman-Johnson equation is studied via a direct approach which involves the derivation of representation formulae for solutions to the problem. Mathematics Subject Classification (2010). 35B44, 35B10, 35B65, 35Q35.

متن کامل

Global Weak Solutions to a Generalized Hyperelastic-rod Wave Equation

We consider a generalized hyperelastic-rod wave equation (or generalized Camassa– Holm equation) describing nonlinear dispersive waves in compressible hyperelastic rods. We establish existence of a strongly continuous semigroup of global weak solutions for any initial data from H1(R). We also present a “weak equals strong”uniqueness result.

متن کامل

Global Existence of Weak Solutions for the Burgers-Hilbert Equation

This paper establishes the global existence of weak solutions to the Burgers-Hilbert equation, for general initial data in L(IR). For positive times, the solution lies in L2∩L∞. A partial uniqueness result is proved for spatially periodic solutions, as long as the total variation remains locally bounded.

متن کامل

Global Weak Solutions for a Shallow Water Equation

where α, γ, ω are given real constants. Equation (1) was first introduced as a model describing propagation of unidirectional gravitational waves in a shallow water approximation over a flat bottom, with u representing the fluid velocity [DGH01]. For α = 0 and for α = 1, γ = 0 we obtain the Korteweg–de Vries and the Camassa–Holm [CH93, J02] equations, respectively. Both of them describe unidire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2012

ISSN: 1534-0392

DOI: 10.3934/cpaa.2012.11.1387