Global asymptotic behavior of nonlinear difference equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behavior of Solutions of Nonlinear Difference Equations

The nonlinear difference equation (E) xn+1 − xn = anφn(xσ(n)) + bn, where (an), (bn) are real sequences, φn : −→ , (σ(n)) is a sequence of integers and lim n−→∞ σ(n) =∞, is investigated. Sufficient conditions for the existence of solutions of this equation asymptotically equivalent to the solutions of the equation yn+1 − yn = bn are given. Sufficient conditions under which for every real consta...

متن کامل

Global Behavior of Two Families of Nonlinear Symmetric Difference Equations

We mainly investigate the global asymptotic stability and exponential convergence of positive solutions to two families of higher-order difference equations, one of which was recently studied in Stević’s paper 2010 . A new concise proof is given to a quite recent result by Stević and analogous parallel result of the other inverse equation, which extend related results of Aloqeili 2009 , Berenha...

متن کامل

Asymptotic Behavior of some Rational Difference Equations

In this difference equation, Stability, Periodicity, boundedness, global Stability. We investigate some qualitative behavior of the solutions of the difference equation

متن کامل

Asymptotic behavior of a system of two difference equations of exponential form

In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...

متن کامل

Global asymptotic behavior for delay dynamic equations

We give conditions under which the trivial solution of a first-order nonlinear variable-delay dynamic equation is asymptotically stable, for arbitrary time scales that are unbounded above. In an example, we apply our techniques to a logistic dynamic equation on isolated, unbounded time scales. c © 2006 Elsevier Ltd. All rights reserved. MSC: 39A10; 34B10

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2005

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2005.01.017