Generalized Fibonacci – Lucas sequence its Properties

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On convolved generalized Fibonacci and Lucas polynomials

We define the convolved hðxÞ-Fibonacci polynomials as an extension of the classical con-volved Fibonacci numbers. Then we give some combinatorial formulas involving the hðxÞ-Fibonacci and hðxÞ-Lucas polynomials. Moreover we obtain the convolved hðxÞ-Fibo-nacci polynomials from a family of Hessenberg matrices. Fibonacci numbers and their generalizations have many interesting properties and appli...

متن کامل

Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes

If f is a binary word and d a positive integer, then the generalized Fibonacci cube Qd(f) is the graph obtained from the d-cube Qd by removing all the vertices that contain f as a factor, while the generalized Lucas cube Qd( ↽Ð f ) is the graph obtained from Qd by removing all the vertices that have a circulation containing f as a factor. The Fibonacci cube Γd and the Lucas cube Λd are the grap...

متن کامل

Generalized Fibonacci and Lucas Polynomials and Their Associated Diagonal Polynomials

Horadam [7], in a recent article, defined two sequences of polynomials Jn(x) and j„(x), the Jacobsthal and Jacobsthal-Lucas polynomials, respectively, and studied their properties. In the same article, he also defined and studied the properties of the rising and descending polynomials i^(x), rn(x), Dn(x)y and dn(x), which are fashioned in a manner similar to those for Chebyshev, Fermat, and oth...

متن کامل

Some Identities for Generalized Fibonacci and Lucas Sequences

In this study, we define a generalization of Lucas sequence {pn}. Then we obtain Binet formula of sequence {pn} . Also, we investigate relationships between generalized Fibonacci and Lucas sequences.

متن کامل

Sums of products of generalized Fibonacci and Lucas numbers

In this paper, we establish several formulae for sums and alternating sums of products of generalized Fibonacci and Lucas numbers. In particular, we recover and extend all results of Z. Čerin [2, 2005] and Z. Čerin and G. M. Gianella [3, 2006], more easily.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Global Journal of Mathematical Analysis

سال: 2014

ISSN: 2307-9002

DOI: 10.14419/gjma.v2i3.2793