Forecasting the urban skyline with extreme value theory
نویسندگان
چکیده
منابع مشابه
high volatility, thick tails and extreme value theory in value at risk estimation: the case of liability insurance in iran insurance company
در این بررسی ابتدا به بررسی ماهیت توزیع خسارات پرداخته میشود و از روش نظریه مقادیر نهایی برای بدست آوردن برآورد ارزش در معرض خطر برای خسارات روزانه بیمه مسئولیت شرکت بیمه ایران استفاده میشود. سپس کارایی نظریه مقدار نهایی در برآورد ارزش در معرض خطر با کارایی سایر روشهای واریانس ، کواریانس و روش شبیه سازی تاریخی مورد مقایسه قرار میگیرد. نتایج این بررسی نشان میدهند که توزیع ،garch شناخته شده مدل...
15 صفحه اولExtreme Value Theory
Extreme Value Theory is the branch of statistics that is used to model extreme events. The topic is of interest to meteorologists because much of the recent literature on climate change has focussed on the possibility that extreme events (very high or low temperatures, high precipitation events, droughts, hurricanes etc.) may be changing in parallel with global warming. As a specific example, t...
متن کاملDemand-Side Management Program Planning Using Stochastic Load Forecasting with Extreme Value Theory
Demand-side management (DSM) is easy to apply to reduce system peak load by a utility and it can be a convenient way to control and change amount of electric usage by end-use customers. Planning and operating techniques for a DSM program are required to efficiently manage and operate the program. This paper is focused on planning technique for an incentive-based DSM program. This paper describe...
متن کاملFundamental of Extreme Value Theory
Extreme value theory deals with the stochastic behavior of the extreme values in a process. For a single process, the behavior of the maxima can be described by the three extreme value distributions–Gumbel, Fréchet and negative Weibull–as suggested by Fisher and Tippett (1928). Kotz and Nadarajah (2000) indicated that the extreme value distributions could be traced back to the work done by Bern...
متن کاملRobust Fusion: Extreme Value Theory
Recognition problems in computer vision often benefit from 5 5 a fusion of different algorithms and/or sensors, with score level fusion be6 6 ing among the most widely used fusion approaches. Score level fusion re7 7 quires the different data to be normalized before combining. Choosing an 8 8 appropriate score normalization technique before fusion is a fundamen9 9 tally difficult problem becaus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Forecasting
سال: 2020
ISSN: 0169-2070
DOI: 10.1016/j.ijforecast.2019.09.004