Factorial Supersymmetric Skew Schur Functions and Ninth Variation Determinantal Identities
نویسندگان
چکیده
The determinantal identities of Hamel and Goulden have recently been shown to apply a tableau-based ninth variation skew Schur functions. Here we extend this approach its results the analogous supersymmetric These tableaux are built on entries taken from an alphabet unprimed primed numbers that may be ordered in myriad different ways, each leading identity. At level corresponding all distinct but original notion supersymmetry is lost. It can remedied at sixth involving doubly infinite sequence factorial parameters. Moreover, it resulting functions independent ordering alphabet.
منابع مشابه
Factorial Supersymmetric Schur Functions and Super Capelli Identities
AND SUPER CAPELLI IDENTITIES Alexander Molev Centre for Mathematics and its Applications, Australian National University, Canberra, ACT 0200, Australia (e-mail: [email protected]) Abstract A factorial analogue of the supersymmetric Schur functions is introduced. It is shown that factorial versions of the Jacobi{Trudi and Sergeev{Pragacz formulae hold. The results are applied to construct a ...
متن کاملA Determinantal Formula for Supersymmetric Schur Polynomials
We derive a new formula for the supersymmetric Schur polynomial sλ(x/y). The origin of this formula goes back to representation theory of the Lie superalgebra gl(m/n). In particular, we show how a character formula due to Kac and Wakimoto can be applied to covariant representations, leading to a new expression for sλ(x/y). This new expression gives rise to a determinantal formula for sλ(x/y). I...
متن کاملProducts of Schur and Factorial Schur Functions
The product of any finite number of Schur and factorial Schur functions can be expanded as a Z[y]-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion which generalizes the classical Littlewood-Richardson rule.
متن کاملEquality of Schur and Skew Schur Functions
We determine the precise conditions under which any skew Schur function is equal to a Schur function over both infinitely and finitely many variables.
متن کاملSkew Quasisymmetric Schur Functions and Noncommutative Schur Functions
Recently a new basis for the Hopf algebra of quasisymmetric functions QSym, called quasisymmetric Schur functions, has been introduced by Haglund, Luoto, Mason, van Willigenburg. In this paper we extend the definition of quasisymmetric Schur functions to introduce skew quasisymmetric Schur functions. These functions include both classical skew Schur functions and quasisymmetric Schur functions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Combinatorics
سال: 2021
ISSN: ['0219-3094', '0218-0006']
DOI: https://doi.org/10.1007/s00026-021-00526-7