Explainable machine learning using real, synthetic and augmented fire tests to predict fire resistance and spalling of RC columns

نویسندگان

چکیده

This paper presents the development of systematic machine learning (ML) approach to enable explainable and rapid assessment fire resistance fire-induced spalling reinforced concrete (RC) columns. The developed comprises an ensemble three novel ML algorithms namely; random forest (RF), extreme gradient boosted trees (ExGBT), deep (DL). These are trained account for a wide collection geometric characteristics material properties, as well loading conditions examine performance normal high strength RC columns by analyzing comprehensive database tests comprising over 494 observations. is also capable presenting quantifiable insights predictions; thus, breaking free from notion 'blackbox' establishing solid step towards transparent ML. Most importantly, this work tackles scarcity available proposing new techniques leverage use real, synthetic augmented test has been calibrated validated standard design exposures one, two, four-sided thus; covering range practical scenarios present during incidents. When fully deployed, can analyze 5,000 in under 60 seconds providing attractive solution researchers practitioners. presented be easily extended evaluating other structural members varying hence paves way modernize state research area practice.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies

The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...

متن کامل

Using GIS to Predict Fire Behavior

ues, ecosystem managers can use GIS to narrow options to a sparially feasible set, More importantly, sensitivity analysis can be performed on critical assumptions, allowing managers tofocus on pivotal areas of uncertainty. Fire is both part and partner in ecosystem management. Fire plays a significant role in the dynamics of forest ecosystems throughout the world; both wildfires and prescribed ...

متن کامل

the relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation

with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...

15 صفحه اول

AMRITA@FIRE-2014: Morpheme Extraction for Tamil using Machine Learning

This article presents the working methodology of supervised Morpheme Extraction Task for Tamil language in Morpheme Extraction Task (MET) Task of FIRE-2014. In this attempt, Tamil Morphemes are extracted based on supervised machine learning algorithm, Support vector machines.

متن کامل

‏‎a comparative study of language learning strategies employmed by bilinguals and monolinguals with reference to attitudes and motivation‎‏

هدف از این تحقیق بررسی برخی عوامل ادراکی واحساسی یعنی استفاده از شیوه های یادگیری زبان ، انگیزه ها ونگرش نسبت به زبان انگلیسی در رابطه با زمینه زبانی زبان آموزان می باشد. هدف بررسی این نکته بود که آیا اختلافی چشمگیر میان زبان آموزان دو زبانه و تک زبانه در میزان استفاده از شیوه های یادگیری زبان ، انگیزه ها نگرش و سطح مهارت زبانی وجود دارد. همچنین سعی شد تا بهترین و موثرترین عوامل پیش بینی کننده ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering Structures

سال: 2022

ISSN: ['0141-0296', '1873-7323']

DOI: https://doi.org/10.1016/j.engstruct.2021.113824