Ergodicity of Stochastic Curve Shortening Flow in the Plane

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ergodicity of Stochastic Curve Shortening Flow in the Plane

We study models of the motion by mean curvature of an (1+1) dimensional interface with random forcing. For the well-posedness of the models we prove existence and uniqueness for certain degenerate nonlinear stochastic evolution equations in the variational framework of Krylov-Rozovskĭı, replacing the standard coercivity assumption by a Lyapunov type condition. Ergodicity is established for the ...

متن کامل

Curve Shortening Flow in a Riemannian Manifold

In this paper, we systemally study the long time behavior of the curve shortening flow in a closed or non-compact complete locally Riemannian symmetric manifold. Assume that we have a global flow. Then we can exhibit a a limit for the global behavior of the flow. In particular, we show the following results. 1). Let M be a compact locally symmetric space. If the curve shortening flow exists for...

متن کامل

the effects of changing roughness on the flow structure in the bends

flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...

A Higher Order Scheme for a Tangentially Stabilized Plane Curve Shortening Flow with a Driving Force

We introduce a new higher order scheme for computing a tangentially stabilized curve shortening flow with a driving force represented by an intrinsic partial differential equation for an evolving curve position vector. Our new scheme is a combination of the explicit forward Euler and the fully-implicit backward Euler schemes. At any discrete time step, the solution is found efficiently using a ...

متن کامل

Grid peeling and the affine curve-shortening flow

In this paper we study an experimentally-observed connection between two seemingly unrelated processes, one from computational geometry and the other from differential geometry. The first one (which we call grid peeling) is the convex-layer decomposition of subsets G ⊂ Z of the integer grid, previously studied for the particular case G = {1, . . . ,m} by Har-Peled and Lidický (2013). The second...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Mathematical Analysis

سال: 2012

ISSN: 0036-1410,1095-7154

DOI: 10.1137/100798235