Embedding ordered fields in formal power series fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Embedding Henselian fields into power series

Every Henselian field of residue characteristic 0 admits a truncation-closed embedding in a field of generalised power series (possibly, with a factor set). As corollaries we obtain the Ax-Kochen-Ershov theorem and an extension of Mourgues and Ressayre’s theorem: every ordered field which is Henselian in its natural valuation has an integer part. We also give some results for the mixed and the ...

متن کامل

The Universality of Formal Power Series Fields*

In a recent paper,f André Gleyzal has constructed ordered fields consisting of certain "transfinite real numbers" and has established the interesting result that any ordered field can be considered as a subfield of one of these transfinite fields. These fields prove to be identical with fields of formal power series in which the exponents are allowed to range over a suitable ordered abelian gro...

متن کامل

hypertranscendental formal power series over fields of positive characteristic

let $k$ be a field of characteristic$p>0$, $k[[x]]$, the ring of formal power series over $ k$,$k((x))$, the quotient field of $ k[[x]]$, and $ k(x)$ the fieldof rational functions over $k$. we shall give somecharacterizations of an algebraic function $fin k((x))$ over $k$.let $l$ be a field of characteristic zero. the power series $finl[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

The inverse Galois problem over formal power series fields

Introduction The inverse Galois problem asks whether every finite group G occurs as a Galois group over the field Q of rational numbers. We then say that G is realizable over Q. This problem goes back to Hilbert [Hil] who realized Sn and An over Q. Many more groups have been realized over Q since 1892. For example, Shafarevich [Sha] finished in 1958 the work started by Scholz 1936 [Slz] and Rei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2002

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(01)00064-0