Efficient solutions to factored MDPs with imprecise transition probabilities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Solutions to Factored MDPs with Imprecise Transition Probabilities

When modeling real-world decision-theoretic planning problems in the Markov Decision Process (MDP) framework, it is often impossible to obtain a completely accurate estimate of transition probabilities. For example, natural uncertainty arises in the transition specification due to elicitation of MDP transition models from an expert or estimation from data, or non-stationary transition distribut...

متن کامل

Factored Markov decision processes with Imprecise Transition Probabilities

This paper presents a short survey of the research we have carried out on planning under uncertainty where we consider different forms of imprecision on the probability transition functions. Our main results are on efficient solutions for Markov Decision Process with Imprecise Transition Probabilities (MDP-IPs), a generalization of a Markov Decision Process where the imprecise probabilities are...

متن کامل

Representing and Solving Factored Markov Decision Processes with Imprecise Probabilities

This paper investigates Factored Markov Decision Processes with Imprecise Probabilities; that is, Markov Decision Processes where transition probabilities are imprecisely specified, and where their specification does not deal directly with states, but rather with factored representations of states. We first define a Factored MDPIP, based on a multilinear formulation for MDPIPs; then we propose ...

متن کامل

Factored Markov Decision Processes with Imprecise Probabilities: a multilinear solution

There are efficient solutions to planning problems modeled as a Markov Decision Process (MDP) envolving a reasonable number of states. However, known extensions of MDP are more suited to represent practical and more interesting applications, such as: (i) an MDP where states are represented by state variables, called a factored MDP; (ii) an MDP where probabilities are not completely known, calle...

متن کامل

Sample Efficient Feature Selection for Factored MDPs

In reinforcement learning, the state of the real world is often represented by feature vectors. However, not all of the features may be pertinent for solving the current task. We propose Feature Selection Explore and Exploit (FS-EE), an algorithm that automatically selects the necessary features while learning a Factored Markov Decision Process, and prove that under mild assumptions, its sample...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Artificial Intelligence

سال: 2011

ISSN: 0004-3702

DOI: 10.1016/j.artint.2011.01.001