Dynamic Conditionally Linear Mixed Models for Longitudinal Data
نویسندگان
چکیده
منابع مشابه
Linear Mixed Models for Longitudinal Data
Make more knowledge even in less time every day. You may not always spend your time and money to go abroad and get the experience and knowledge by yourself. Reading is a good alternative to do in getting this desirable knowledge and experience. You may gain many things from experiencing directly, but of course it will spend much money. So here, by reading linear mixed models for longitudinal da...
متن کاملTransition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses
In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...
متن کاملLinear Mixed Models for Longitudinal Data with Nonrandom Dropouts
Longitudinal studies represent one of the principal research strategies employed in medical and social research. These studies are the most appropriate for studying individual change over time. The prematurely withdrawal of some subjects from the study (dropout) is termed nonrandom when the probability of missingness depends on the missing value. Nonrandom dropout is common phenomenon associate...
متن کاملCovariance Estimation for Multivariate Conditionally Gaussian Dynamic Linear Models
In multivariate time series, the estimation of the covariance matrix of the observation innovations plays an important role in forecasting as it enables the computation of the standardized forecast error vectors as well as it enables the computation of confidence bounds of the forecasts. We develop an on-line, non-iterative Bayesian algorithm for estimation and forecasting. It is empirically fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2002
ISSN: 0006-341X
DOI: 10.1111/j.0006-341x.2002.00225.x