Different degrees of non-compactness for optimal Sobolev embeddings

نویسندگان

چکیده

The structure of non-compactness optimal Sobolev embeddings m-th order into the class Lebesgue spaces and that all rearrangement-invariant function is quantitatively studied. Sharp two-sided estimates Bernstein numbers such are obtained. It shown that, whereas embedding within finitely strictly singular, in not even singular.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Sobolev Embeddings on R

The aim of this paper is to study Sobolev-type embeddings and their optimality. We work in the frame of rearrangement-invariant norms and unbounded domains. We establish the equivalence of a Sobolev embedding to the boundedness of a certain Hardy operator on some cone of positive functions. This Hardy operator is then used to provide optimal domain and range rearrangement-invariant norm in the ...

متن کامل

Improved Sobolev Embeddings, Profile Decomposition, and Concentration-compactness for Fractional Sobolev Spaces

We obtain an improved Sobolev inequality in Ḣ spaces involving Morrey norms. This refinement yields a direct proof of the existence of optimizers and the compactness up to symmetry of optimizing sequences for the usual Sobolev embedding. More generally, it allows to derive an alternative, more transparent proof of the profile decomposition in Ḣ obtained in [19] using the abstract approach of di...

متن کامل

Optimal Domain Spaces in Orlicz-sobolev Embeddings

We deal with Orlicz-Sobolev embeddings in open subsets of R. A necessary and sufficient condition is established for the existence of an optimal, i.e. largest possible, Orlicz-Sobolev space continuously embedded into a given Orlicz space. Moreover, the optimal Orlicz-Sobolev space is exhibited whenever it exists. Parallel questions are addressed for Orlicz-Sobolev embeddings into Orlicz spaces ...

متن کامل

Compactness of Embeddings

An improvement of the author’s result, proved in 1961, concerning necessary and sufficient conditions for the compactness of embedding operators is given. A discussion of the necessity of the compatibility of the norms of the Banach spaces X2 and X3, where X2 ⊂ X3, is given. The injectivity of the embedding operator J : X2 → X3 implies this compatibility.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2023

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2023.109880