Den virkelig store forskjellen

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Do Store Brands Aid Store Loyalty?

Do store brands aid store loyalty by enhancing store differentiation or merely draw price sensitive customers with little or no store loyalty? This paper seeks to answer the question by empirically investigating the relationship between store brand loyalty and store loyalty. First, we find a robust monotonic positive relationship between store brand loyalty and store loyalty using multiple loya...

متن کامل

From Store Brands to Store Brandscapes:

Purpose: This research investigates role of store brands as a time and money saving heuristic in the context of an omnipresent store brand hierarchy. Drawing on the work of Tversky and Kahneman (1982) it proposes that the store brand hierarchy is characterised by many of the traits of frequently used heuristics employed by grocery shoppers. Design/methodology/approach: Based on Chaiken’s (1980)...

متن کامل

     Fabian Van Den Broek

Software contains bugs and bugs cost money. A good way to find some bugs quickly is the use of static code analysis. There are no exact numbers on the use of static code analyzers in the industry, but in our experience to few software developers actually make use of them. This thesis describes a survey that was conducted to find out why only so few developers in the Java community use static co...

متن کامل

Lösungen Zu Den Übungsaufgaben

. () Angenommen, es gibt a 6= b ∈ A mit g(f(a)) = g(f(b)). Da f injektiv ist, gilt f(a) 6= f(b). Dann muss aber auch g(f(a)) 6= g(f(b)) gelten, da g injektiv ist. () und () folgen analog. () Würde es f(a) = f(b) für a 6= b ∈ A gelten, so sollte auch g(f(a)) = g(f(b)) gelten, ein Widerspruch zu der Injektivität von g ◦ f . () und () folgen analog. Beispiel: Wir betrachten die Mengen A = ...

متن کامل

Den Essen And

Let z = (z1, · · · , zn) and ∆ = ∑n i=1 ∂ 2 ∂z i the Laplace operator. A formal power series P (z) is said to be Hessian Nilpotent(HN) if its Hessian matrix HesP (z) = ( ∂ 2 P ∂zi∂zj ) is nilpotent. In recent developments in [BE1], [M] and [Z], the Jacobian conjecture has been reduced to the following so-called vanishing conjecture(VC) of HN polynomials: for any homogeneous HN polynomial P (z) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tidsskrift for Den norske legeforening

سال: 2009

ISSN: 0029-2001

DOI: 10.4045/tidsskr.09.0541