Constrained multi-degree reduction with respect to Jacobi norms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained multi-degree reduction of Bézier surfaces using Jacobi polynomials

Article history: Received 9 March 2007 Received in revised form 16 June 2008 Accepted 20 October 2008 Available online 1 November 2008

متن کامل

Lipschitz Spaces with respect to Jacobi Translation

The Jacobi polynomials induce a translation operator on function spaces on the interval [−1, 1]. For any homogeneous Banach space B w.r.t. this translation, we can study the according little and big Lipschitz spaces, lipB(λ) and LipB(λ), respectively. The big Lipschitz spaces are not homogeneous themselves. Therefore we introduce semihomogeneous Banach spaces w.r.t. Jacobi translation, of which...

متن کامل

Optimal Constrained Explicit Multi-degree Reduction Approximation of DP Curves ★

DP curves, which possess the shape-preserving property and linear complexity evaluation algorithm, occupy a significantly important place in computer aided geometric design. Thus to do the research on the DP curves algorithms has a positive meaning. Aphirukmatakun et al. presented a degree elevation algorithm of DP curves based on the transformation between the DP basis and power basis. At the ...

متن کامل

Optimal constrained multi-degree reduction of Bézier curves with explicit expressions based on divide and conquer

We decompose the problem of the optimal multi-degree reduction of Bézier curves with corners constraint into two simpler subproblems, namely making high order interpolations at the two endpoints without degree reduction, and doing optimal degree reduction without making high order interpolations at the two endpoints. Further, we convert the second subproblem into multi-degree reduction of Jacob...

متن کامل

Constrained Approximation with Jacobi Weights

In this paper, we prove that for l = 1 or 2 the rate of best l-monotone polynomial approximation in the Lp norm (1 ≤ p ≤ ∞) weighted by the Jacobi weight wα ,β(x) ∶= (1 + x)α(1 − x)β with α, β > −1/p if p <∞, or α, β ≥ 0 if p =∞, is bounded by an appropriate (l + 1)-st modulus of smoothness with the same weight, and that this rate cannot be bounded by the (l+2)-ndmodulus. Related results on con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Aided Geometric Design

سال: 2016

ISSN: 0167-8396

DOI: 10.1016/j.cagd.2015.12.003