Closed EP and hypo-EP operators on Hilbert spaces
نویسندگان
چکیده
A bounded linear operator on a Hilbert space $${\mathcal {H}}$$ is said to be an EP (hypo-EP) if ranges of and $$A^*$$ are equal (range contained in range ) has closed range. In this paper, we define hypo-EP operators for densely defined spaces extend results from settings (possibly unbounded) settings.
منابع مشابه
Products Of EP Operators On Hilbert C*-Modules
In this paper, the special attention is given to the product of two modular operators, and when at least one of them is EP, some interesting results is made, so the equivalent conditions are presented that imply the product of operators is EP. Also, some conditions are provided, for which the reverse order law is hold. Furthermore, it is proved that $P(RPQ)$ is idempotent, if $RPQ$†</...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولContinuous operators on Hilbert spaces
Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most closely imitate finite-dimensional operator theory. In addition, compact operators are important in practice. We prove a spectral theorem for self-adjoint compact operators, which does not use broader discussions of properties of spectra, only using the Cauchy-Schwarz-Bunyakowsky inequality...
متن کامل08a. Operators on Hilbert spaces
Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most closely imitate finite-dimensional operator theory. In addition, compact operators are important in practice. We prove a spectral theorem for self-adjoint compact operators, which does not use broader discussions of properties of spectra, only using the Cauchy-Schwarz-Bunyakowsky inequality...
متن کاملDefinable Operators on Hilbert Spaces
Let H be an infinite-dimensional (real or complex) Hilbert space, viewed as a metric structure in its natural signature. We characterize the definable linear operators on H as exactly the “scalar plus compact” operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The journal of analysis
سال: 2022
ISSN: ['0971-3611']
DOI: https://doi.org/10.1007/s41478-022-00401-5