Čech Cohomology and Covering Dimension for the H∞ Maximal Ideal Space
نویسندگان
چکیده
منابع مشابه
Topology of the Maximal Ideal Space of H
We study the structure of the maximal ideal space M(H∞) of the algebra H ∞ = H∞(D) of bounded analytic functions defined on the open unit disk D ⊂ C. Based on the fact that dim M(H∞) = 2 we prove for H∞ the matrix-valued corona theorem. Our results heavily rely on the topological construction describing maximal ideal spaces of certain algebras of continuous functions defined on the covering spa...
متن کاملOn the maximal ideal space of extended polynomial and rational uniform algebras
Let K and X be compact plane sets such that K X. Let P(K)be the uniform closure of polynomials on K. Let R(K) be the closure of rationalfunctions K with poles o K. Dene P(X;K) and R(X;K) to be the uniformalgebras of functions in C(X) whose restriction to K belongs to P(K) and R(K),respectively. Let CZ(X;K) be the Banach algebra of functions f in C(X) suchthat fjK = 0. In this paper, we show th...
متن کاملSequences in the Maximal Ideal Space of 77°°
This paper studies the behavior of sequences in the maximal ideal space of the algebra of bounded analytic functions on an arbitrary domain. The main result states that for any such sequence, either the sequence has an interpolating subsequence or infinitely many elements of the sequence lie in the same Gleason part. Introduction Fix a positive integer N and fix a nonempty open subset Q. of C ....
متن کاملZ2-graded Čech Cohomology in Noncommutative Geometry ∗ Do Ngoc Diep
The Z 2-gradedČech cohomology theory is considered in the framework of noncommutative geometry over complex number field and in particular the homotopy invariance and Morita invariance are proven. In some special case we deduce an isomorphism between this noncom-mutative theory and the classical Z 2-gradedČech cohomology theory.
متن کاملContact CR Submanifolds of maximal Contact CR dimension of Sasakian Space Form
In this paper, we investigate contact CR submanifolds of contact CR dimension in Sasakian space form and introduce the general structure of these submanifolds and then studying structures of this submanifols with the condition h(FX,Y)+h(X,FY)=g(FX,Y)zeta, for the normal vector field zeta, which is nonzero, and we classify these submanifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1994
ISSN: 0022-1236
DOI: 10.1006/jfan.1994.1088