Categorical Abstract Algebraic Logic: Subdirect Representation of Pofunctors

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categorical Abstract Algebraic Logic: Subdirect Representation of Pofunctors

Pałasińska and Pigozzi developed a theory of partially ordered varieties and quasi-varieties of algebras with the goal of addressing issues pertaining to the theory of algebraizability of logics involving an abstract form of the connective of logical implication. Following their lead, the author has abstracted the theory to cover the case of algebraic systems, systems that replace algebras in t...

متن کامل

Categorical Abstract Algebraic Logic: Closure Operators on Classes of PoFunctors

Following work of Pa lasińska and Pigozzi on partially ordered varieties and quasi-varieties of universal algebras, the author recently introduced partially ordered systems (posystems) and partially ordered functors (pofunctors) to cover the case of the algebraic systems arising in categorical abstract algebraic logic. Analogs of the ordered homomorphism theorems of universal algebra were shown...

متن کامل

Categorical Abstract Algebraic Logic: Subdirect Representation for Classes of Structure Systems

The notion of subdirect irreducibility in the context of languages without equality, as presented by Elgueta, is extended in order to obtain subdirect representation theorems for abstract and reduced classes of structure systems. Structure systems serve as models of firstorder theories but, rather than having universal algebras as their algebraic reducts, they have algebraic systems in the sens...

متن کامل

Categorical Abstract Algebraic Logic: Equivalential

The theory of equivalential deductive systems, as introduced by Prucnal and Wroński and further developed by Czelakowski, is abstracted to cover the case of logical systems formalized as π-institutions. More precisely, the notion of an N-equivalence system for a given π-institution is introduced. A characterization theorem for N-equivalence systems, previously proven for N-parameterized equival...

متن کامل

Categorical Abstract Algebraic Logic: Categorical Algebraization of Equational Logic

This paper deals with the algebraization of multi-signature equational logic in the context of the modern theory of categorical abstract algebraic logic. Two are the novelties compared to traditional treatments: First, interpretations between different algebraic types are handled in the object language rather than the metalanguage. Second, rather than constructing the type of the algebraizing c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2006

ISSN: 0092-7872,1532-4125

DOI: 10.1080/00927870601042118