Boundary Behavior and Cesàro Means of Universal Taylor Series
نویسندگان
چکیده
منابع مشابه
Boundary Behavior and Cesàro Means of Universal Taylor Series
We study boundary properties of universal Taylor series. We prove that if f is a universal Taylor series on the open unit disk, then there exists a residual subset G of the unit circle such that f is unbounded on all radii with endpoints in G. We also study the effect of summability methods on universal Taylor series. In particular, we show that a Taylor series is universal if and only if its C...
متن کاملUniversal Taylor series
© Annales de l’institut Fourier, 1996, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملOn the Approximation Properties of Cesàro Means of Negative Order of Walsh-Fourier Series
In this paper we establish approximate properties of Cesàro (C,−α)-means with α ∈ (0, 1) of Walsh-Fourier series. This result allows one to obtain the condition which is sufficient for the convergence of the means σ−α n (f, x) to f (x) in the L p-metric. We also show that this condition cannot be improved in the case p = 1.
متن کاملIntegral Means and Boundary Limits of Dirichlet Series
We study the boundary behavior of functions in the Hardy spaces H p for ordinary Dirichlet series. Our main result, answering a question of H. Hedenmalm, shows that the classical F. Carlson theorem on integral means does not extend to the imaginary axis for functions in H ∞, i.e., for ordinary Dirichlet series in H∞ of the right half-plane. We discuss an important embedding problem for H , the ...
متن کاملCesàro means of Jacobi expansions on the parabolic biangle
We study Cesàro (C, δ) means for two-variable Jacobi polynomials on the parabolic biangle B = {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1}. Using the product formula derived by Koornwinder & Schwartz for this polynomial system, the Cesàro operator can be interpreted as a convolution operator. We then show that the Cesàro (C, δ) means of the orthogonal expansion on the biangle are uniformly bounded if δ > ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Complutense
سال: 2006
ISSN: 1988-2807,1139-1138
DOI: 10.5209/rev_rema.2006.v19.n1.16662