Blow-up for discrete reaction-diffusion equations on networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global existence and blow-up solutions for quasilinear reaction-diffusion equations with a gradient term

In this work, we study the blow-up and global solutions for a quasilinear reaction–diffusion equation with a gradient term and nonlinear boundary condition:      (g(u)) t = ∆u + f (x, u, |∇u| 2 , t) in D × (0, T), ∂u ∂n = r(u) on ∂D × (0, T), u(x, 0) = u 0 (x) > 0 in D, where D ⊂ R N is a bounded domain with smooth boundary ∂D. Through constructing suitable auxiliary functions and using ma...

متن کامل

Blow-up for a reaction-diffusion equation with variable coefficient

We study the blow-up behavior for positive solutions of a reaction–diffusion equationwith nonnegative variable coefficient. When there is no stationary solution, we show that the solution blows up in finite time. Under certain conditions, we then show that any point with zero source cannot be a blow-up point. © 2012 Elsevier Ltd. All rights reserved.

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Classification of blow-up with nonlinear diffusion and localized reaction

We study the behaviour of nonnegative solutions of the reaction-diffusion equation    ut = (u)xx + a(x)up in R× (0, T ), u(x, 0) = u0(x) in R. The model contains a porous medium diffusion term with exponent m > 1, and a localized reaction a(x)up where p > 0 and a(x) ≥ 0 is a compactly supported function. We investigate the existence and behaviour of the solutions of this problem in dependenc...

متن کامل

Dirichlet Boundary Conditions Can Prevent Blow-up in Reaction-diffusion Equations and Systems

This paper examines the following question: Suppose that we have a reaction-diffusion equation or system such that some solutions which are homogeneous in space blow up in finite time. Is it possible to inhibit the occurrence of blow-up as a consequence of imposing Dirichlet boundary conditions, or of other effects where diffusion plays a role? We give examples of equations and systems where th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis and Discrete Mathematics

سال: 2015

ISSN: 1452-8630,2406-100X

DOI: 10.2298/aadm150210005c