Binary matroids and local complementation
نویسندگان
چکیده
منابع مشابه
Binary Symmetric Matrix Inversion Through Local Complementation
We consider the Schur complement operation for symmetric matrices over GF(2), which we identify with graphs through the adjacency matrix representation. It is known that Schur complementation for such a matrix (i.e., for a graph) can be decomposed into a sequence of two types of elementary Schur complement operations: (1) local complementation on a looped vertex followed by deletion of that ver...
متن کاملEdge local complementation and equivalence of binary linear codes
Orbits of graphs under the operation edge local complementation (ELC) are defined. We show that the ELC orbit of a bipartite graph corresponds to the equivalence class of a binary linear code. The information sets and the minimum distance of a code can be derived from the corresponding ELC orbit. By extending earlier results on local complementation (LC) orbits, we classify the ELC orbits of al...
متن کاملRemovable Circuits in Binary Matroids
We show that if M is a connected binary matroid of cogirth at least ve which does not have both an F 7-minor and an F 7-minor, then M has a circuit C such that M ? C is connected and r(M ? C) = r(M).
متن کاملA construction for binary matroids
A family of subsets of a ground set closed under the operation of taking symmetric differences is the family of cycles of a binary matroid. Its circuits are the minimal members of this collection. We use this basic property to derive binary matroids from binary matroids. In particular, we derive two matroids from graphic and cographic matroids. Cocycles of the first one are cutsets or balancing...
متن کاملInvolutions Of Connected Binary Matroids
We prove that if an involution φ is an automorphism of a connected binary matroid M , then there is a hyperplane of M that is invariant under φ. We also consider extensions of this result for higher connectivity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2015
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2014.10.001