Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions
نویسندگان
چکیده
منابع مشابه
Damped Wave Equations with Dynamic Boundary Conditions
We discuss several classes of linear second order initial-boundary value problems, where damping terms appear in the main wave equation as well as in the dynamic boundary condition. We investigate their wellposedness and describe some qualitative properties of their solutions, including boundedness, stability, or almost periodicity. In particular, we are able to characterize the analyticity of ...
متن کاملAttractors for Strongly Damped Wave Equations with Critical Nonlinearities
In this paper we obtain global well-posedness results for the strongly damped wave equation utt + (−∆)θut = ∆u + f(u), for θ ∈ [1 2 , 1 ] , in H 0(Ω)×L(Ω) when Ω is a bounded smooth domain and the map f grows like |u|n+2 n−2 . If f = 0, then this equation generates an analytic semigroup with generator −A(θ). Special attention is devoted to the case when θ = 1 since in this case the generator −A...
متن کاملUniform Exponential Attractors for Non-Autonomous Strongly Damped Wave Equations
In this paper, we study the existence of exponential attractors for strongly damped wave equations with a time-dependent driving force. To this end, the uniform Hölder continuity is established to the variation of the process in the phase apace. In a certain parameter region, the exponential attractor is a uniformly exponentially attracting time-dependent set in the phase apace, and is finite-d...
متن کاملAsymptotic behaviour of strongly damped nonlinear hyperbolic equations
© AFCET, 1989, tous droits réservés. L’accès aux archives de la revue « Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de cop...
متن کاملGlobal Attractors for Damped Semilinear Wave Equations
The existence of a global attractor in the natural energy space is proved for the semilinear wave equation utt + βut − ∆u + f(u) = 0 on a bounded domain Ω ⊂ R with Dirichlet boundary conditions. The nonlinear term f is supposed to satisfy an exponential growth condition for n = 2, and for n ≥ 3 the growth condition |f(u)| ≤ c0(|u|γ + 1), where 1 ≤ γ ≤ n n−2 . No Lipschitz condition on f is assu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2016
ISSN: 0951-7715,1361-6544
DOI: 10.1088/0951-7715/29/4/1171