Asymptotics and sign patterns for coefficients in expansions of Habiro elements
نویسندگان
چکیده
Abstract We prove asymptotics and study sign patterns for coefficients in expansions of elements the Habiro ring which satisfy a strange identity. As an application, we discuss positivity generalized Fishburn numbers arise from Kontsevich–Zagier series associated to colored Jones polynomial family torus knots. This extends Zagier’s result on numbers.
منابع مشابه
patterns and variations in native and non-native interlanguage pragmatic rating: effects of rater training, intercultural proficiency, and self-assessment
although there are studies on pragmatic assessment, to date, literature has been almost silent about native and non-native english raters’ criteria for the assessment of efl learners’ pragmatic performance. focusing on this topic, this study pursued four purposes. the first one was to find criteria for rating the speech acts of apology and refusal in l2 by native and non-native english teachers...
15 صفحه اولanalyzing patterns of classroom interaction in efl classrooms in iran
با به کار گیری روش گفتما ن شنا سی در تحقیق حا ضر گفتا ر میا ن آموزگا را ن و زبا ن آموزا ن در کلا سهای زبا ن انگلیسی در ایرا ن مورد بررسی قرار گرفت. ا هداف تحقیق عبا رت بودند از: الف) شنا سا ئی سا ختارهای ارتبا ط گفتا ری میا ن معلمین و زبا ن آموزا ن ب) بررسی تا ثیر نقش جنسیت دبیرا ن و زبا ن آموزان بر سا ختا رهای ارتبا ط گفتا ری میا ن آنها پ) مشخص کردن اینکه آ یا آموزگاران غا لب بر این ارتبا ط گف...
Chemical Reaction Networks: Comparing Deficiency, Determinant Expansions, and Sign Patterns
This paper will treat three topics motivated by chemical reaction networks with massaction kinetics; they are commonly referred to as deficiency, determinant expansions, and sign patterns. The dynamics of a chemical reaction network are governed by a non-linear system of ordinary differential equations dx dt = f(x), and what is observed in experiments is often equilibria states, {x : f(x) = 0} ...
متن کاملLarge Deviation Asymptotics for Continued Fraction Expansions
We study large deviation asymptotics for processes defined in terms of continued fraction digits. We use the continued fraction digit sum process to define a stopping time and derive a joint large deviation asymptotic for the upper and lower fluctuation process. Also a large deviation asymptotic for single digits is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2023
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-023-03307-5