Application of Block Sparse Bayesian Learning in Power Quality Steady-State Data Compression
نویسندگان
چکیده
In modern power systems, condition monitoring equipment generates a great deal of steady-state data that are too large for transmission and, thus, compression is needed. Therefore, there balance to strike between quality and accuracy. Greedy algorithms effective but suffer from low reconstruction This paper proposes block sparse Bayesian learning (BSBL)-based method. Based on the prior distribution posterior probability signals, it uses formula excavate structure these signals. also adds two indicators evaluation process validate proposed The method in terms signal-to-noise ratio (SNR), relative root mean square error (RRMSE), amplitude error, energy recovery percentage (ERP), angle error. first three indicate better performance than traditional by giving same ratio. validates possibility more accurate economical solution assurance.
منابع مشابه
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولSpeaker Recognition via Block Sparse Bayesian Learning
In order to demonstrate the effectiveness of sparse representation techniques for speaker recognition, a dictionary of feature vectors belonging to all speakers is constructed by total variability i-vectors. Each feature vector from unknown utterance is expressed as linear weighted sum of a dictionary. The weights are calculated using Block Sparse Bayesian Learning (BSBL) where the sparsest sol...
متن کاملFast Marginalized Block Sparse Bayesian Learning Algorithm
The performance of sparse signal recovery from noise corrupted, underdetermined measurements can be improved if both sparsity and correlation structure of signals are exploited. One typical correlation structure is the intra-block correlation in block sparse signals. To exploit this structure, a framework, called block sparse Bayesian learning (BSBL), has been proposed recently. Algorithms deri...
متن کاملSparse Signal Representation: Image Compression using Sparse Bayesian Learning
with Φ ∈ RN×M , M ≥ N , and some noise . The challenge is to determine the sparsest representation of reconstruction coefficients w = [w1, . . . , wM ] . Finding a sparse representation of a signal in an overcomplete dictionary is equivalent to solving a regularized linear inverse. For a given dictionary Φ, finding the maximally sparse w is an NP-hard problem [1]. A great deal of recent researc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2022
ISSN: ['1996-1073']
DOI: https://doi.org/10.3390/en15072479