Action Recognition in Video Sequences using Deep Bi-Directional LSTM With CNN Features
نویسندگان
چکیده
منابع مشابه
Incremental Parsing with Minimal Features Using Bi-Directional LSTM
Recently, neural network approaches for parsing have largely automated the combination of individual features, but still rely on (often a larger number of) atomic features created from human linguistic intuition, and potentially omitting important global context. To further reduce feature engineering to the bare minimum, we use bi-directional LSTM sentence representations to model a parser stat...
متن کاملAction Recognition with Image Based CNN Features
Most of human actions consist of complex temporal compositions of more simple actions. Action recognition tasks usually relies on complex handcrafted structures as features to represent the human action model. Convolutional Neural Nets (CNN) have shown to be a powerful tool that eliminate the need for designing handcrafted features. Usually, the output of the last layer in CNN (a layer before t...
متن کاملYZU-NLP at EmoInt-2017: Determining Emotion Intensity Using a Bi-directional LSTM-CNN Model
The EmoInt-2017 task aims to determine a continuous numerical value representing the intensity to which an emotion is expressed in a tweet. Compared to classification tasks that identify 1 among n emotions for a tweet, the present task can provide more fine-grained (real-valued) sentiment analysis. This paper presents a system that uses a bi-directional LSTM-CNN model to complete the competitio...
متن کاملLearning Orthographic Features in Bi-directional LSTM for Biomedical Named Entity Recognition
End-to-end neural network models for named entity recognition (NER) have shown to achieve effective performances on general domain datasets (e.g. newswire), without requiring additional hand-crafted features. However, in biomedical domain, recent studies have shown that handengineered features (e.g. orthographic features) should be used to attain effective performance, due to the complexity of ...
متن کاملGated Bi-directional CNN for Object Detection
The visual cues from multiple support regions of different sizes and resolutions are complementary in classifying a candidate box in object detection. How to effectively integrate local and contextual visual cues from these regions has become a fundamental problem in object detection. Most existing works simply concatenated features or scores obtained from support regions. In this paper, we pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2017.2778011