A variant of Chebyshev inequality with applications
نویسندگان
چکیده
منابع مشابه
A NORM INEQUALITY FOR CHEBYSHEV CENTRES
In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...
متن کاملExtensions of Chebyshev inequality for fuzzy integral and applications⋆
The theory of fuzzy measures and fuzzy integrals was introduced by Sugeno [24] as a tool for modeling nondeterministic problems. Sugeno’s integral is analogous to Lebesgue integral which has been studied by many authors, including Pap [18], Ralescu and Adams [19] and, Wang and Klir [25], among others. RománFlores et al [9, 20–23], started the studies of inequalities for Sugeno integral, and the...
متن کاملa norm inequality for chebyshev centres
in this paper, we study the chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. in particular, we prove that if t is a remotal subset of an inner product space h, and f is a star-shaped set at a relative chebyshev centre c of t with respect to f, then llx - qt (x)1i2 2 ilx-cll2 + ilc-qt (c) 112 x e f, where qt : f + t is any choice function s...
متن کاملResults of the Chebyshev type inequality for Pseudo-integral
In this paper, some results of the Chebyshev type integral inequality for the pseudo-integral are proven. The obtained results, are related to the measure of a level set of the maximum and the sum of two non-negative integrable functions. Finally, we applied our results to the case of comonotone functions.
متن کاملA Geometric Inequality with Applications
In this paper, we present a new geometric inequality which involves an arbitrary point in the plane of a triangle. A simpler proof of a known inequality with one parameter is obtained by using our result. We also derive the famous Sondat fundamental triangle inequality from it. Mathematics subject classification (2010): 51M16.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Inequalities
سال: 2013
ISSN: 1846-579X
DOI: 10.7153/jmi-07-51