A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics

We present a highly robust second order accurate scheme for the Euler equations and the ideal MHD equations. The scheme is of predictor-corrector type, with a MUSCL scheme following as a special case. The crucial ingredients are an entropy stable approximate Riemann solver and a new spatial reconstruction that ensures positivity of mass density and pressure. For multidimensional MHD, a new disc...

متن کامل

A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics

We describe our experience using NVIDIA’s CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly...

متن کامل

Why the MUSCL-Hancock Scheme is L1-stable

The finite volume methods are one of the most popular numerical procedure to approximate the weak solutions of hyperbolic systems of conservation laws. They are developed in the framework of first-order numerical schemes. Several approaches are proposed to increase the order of accuracy. The van Leer methods are interesting ways. One of them, namely the MUSCL-Hancock scheme, is full time and sp...

متن کامل

A Parallel Solution-Adaptive Scheme for Ideal Magnetohydrodynamics

A parallel adaptive mesh refinement (AMR) scheme is described for solving the hyperbolic system of partial-differential equations governing ideal magnetohydrodynamic (MHD) flows in three space dimensions. This highly parallelized algorithm adopts a cell-centered upwind finite-volume discretization procedure and uses limited solution reconstruction, approximate Riemann solvers, and explicit mult...

متن کامل

Provably Positive Discontinuous Galerkin Methods for Multidimensional Ideal Magnetohydrodynamics

The density and pressure are positive physical quantities in magnetohydrodynamics (MHD). Design of provably positivity-preserving (PP) numerical schemes for ideal compressible MHD is highly desired, but remains a challenge especially in the multi-dimensional cases. In this paper, we develop uniformly high-order discontinuous Galerkin (DG) schemes which provably preserve the positivity of densit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2009

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2009.08.020