A Mixed Finite Element Method for Elasticity in Three Dimensions
نویسندگان
چکیده
منابع مشابه
A Mixed Finite Element Method for Elasticity in Three Dimensions
We describe a stable mixed finite element method for linear elasticity in three dimensions.
متن کاملA Stabilized Mixed Finite Element Method for Nearly Incompressible Elasticity
We present a new multiscale/stabilized finite element method for compressible and incompressible elasticity. The multiscale method arises from a decomposition of the displacement field into coarse (resolved) and fine (unresolved) scales. The resulting stabilizedmixed form consistently represents the fine computational scales in the solution and thus possesses higher coarse mesh accuracy. The en...
متن کاملA Mixed Finite Element Method for Elasticity Problem
This paper describes a numerical solution for plane elasticity problem. It includes algorithms for discretization by mixed finite element methods. The discrete scheme allows the utilization of Brezzi Douglas Marini element (BDM1) for the stress tensor and piecewise constant elements for the displacement. The numerical results are compared with some previously published works or with others comi...
متن کاملDomain Decomposition for a Mixed Finite Element Method in Three Dimensions
We consider the solution of the discrete linear system resulting from a mixed finite element discretization applied to a second-order elliptic boundary value problem in three dimensions. Based on a decomposition of the velocity space, these equations can be reduced to a discrete elliptic problem by eliminating the pressure through the use of substructures of the domain. The practicality of the ...
متن کاملA Stabilized Mixed Finite Element Method for Finite Elasticity Formulation for Linear Displacement and Pressure Interpolation
A stabilized mixed finite element method for finite elasticity is presented. The method circumvents the fulfillment of the Ladyzenskaya-Babuska-Brezzi condition by adding mesh-dependent terms, which are functions of the residuals of the Euler-Lagrange equations, to the usual Galerkin method. The weak form and the linearized weak form are presented in terms of the reference and current configura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Scientific Computing
سال: 2005
ISSN: 0885-7474,1573-7691
DOI: 10.1007/s10915-004-4807-3