A generalized Cantor theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Cantor Theorem

A well known theorem of Cantor asserts that the cardinal of the power-set of a given set always exceeds the cardinal of the original set. An analogous result for sets having additional structure is the well known theorem that the set of initial segments of a well ordered set always has order type greater than the original set. These two theorems suggest that there should be a similar result for...

متن کامل

Cantor-bernstein Theorem for Lattices

This paper is a continuation of a previous author’s article; the result is now extended to the case when the lattice under consideration need not have the least element.

متن کامل

A Cantor-lebesgue Theorem with Variable "coefficients"

If {qn} is a lacunary sequence of integers, and if for each n, cn(x) and c-n(x) are trigonometric polynomials of degree n, then {Cn(X)} must tend to zero for almost every x whenever {cn(x)ei?nX + c-n(-x)e-i?'nX} does. We conjecture that a similar result ought to hold even when the sequence {f On} has much slower growth. However, there is a sequence of integers {nj } and trigonometric polynomial...

متن کامل

Cantor-Bernstein theorem for pseudo BCK-algebras

For any σ-complete Boolean algebras A and B, if A is isomorphic to [0, b] ⊆ B and B is isomorphic to [0, a] ⊆ A, then A B. Recently, several generalizations of this known CantorBernstein type theorem for MV-algebras, (pseudo) effect algebras and `-groups have appeared in [1], [2], [4] and [5]. We prove an analogous result for certain pseudo BCK-algebras—a noncommutative extension of BCK-algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1962

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1962-0144824-3