A double commutant theorem for purely large C*-subalgebras of real rank zero corona algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Richness of Multiplier and Corona Algebras of Simple C∗-algebras with Real Rank Zero

In this paper we investigate the extremal richness of the multiplier algebra M(A) and the corona algebra M(A)/A, for a simple C∗-algebra A with real rank zero and stable rank one. We show that the space of extremal quasitraces and the scale of A contain enough information to determine whether M(A)/A is extremally rich. In detail, if the scale is finite, then M(A)/A is extremally rich. In import...

متن کامل

The Relative Commutant of Separable C*-algebras of Real Rank Zero

We answer a question of E. Kirchberg (personal communication): does the relative commutant of a separable C*-algebra in its ultrapower depend on the choice of the ultrafilter? All algebras and all subalgebras in this note are C*-algebras and C*subalgebras, respectively, and all ultrafilters are nonprincipal ultrafilters on N. Our C*-terminology is standard (see e.g., [2]). In the following U ra...

متن کامل

Commutative C-subalgebras of Simple Stably Finite C-algebras with Real Rank Zero

Let X be a second countable, path connected, compact metric space and let A be a unital separable simple exact Z-stable real rank zero C∗-algebra. We classify all the embeddings (up to approximate unitary equivalence) of C(X) into A. Specifically, we prove the following: Theorem: Let α ∈ KL(C(X), A)+,1 and let λ : T (A) → T (C(X)) be an affine continuous map such that (i) if h ∈ Aff(T (C(X))) i...

متن کامل

A double commutant theorem for Murray-von Neumann algebras.

Murray-von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra A of the Murray-von Neumann algebra A(f)(R) associated with a finite von Neumann algebra R is the Murray-von Neumann algebra A(f)(A(0)), wh...

متن کامل

Purely Infinite Corona Algebras of Simple C∗-algebras

In this paper we study the problem of when the corona algebra of a non-unital C∗-algebra is purely infinite. A complete answer is obtained for stabilisations of simple and unital algebras that have enough comparison of positive elements. Our result relates the pure infiniteness condition (from its strongest to weakest forms) to the geometry of the tracial simplex of the algebra, and to the beha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2009

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm190-2-3