A Consensus Clustering Method for Clustering Social Networks
نویسندگان
چکیده
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملA New Method for Clustering Wireless Sensor Networks to Improve the Energy Consumption
Clustering is an effective approach for managing nodes in Wireless Sensor Network (WSN). A new method of clustering mechanism with using Binary Gravitational Search Algorithm (BGSA) in WSN, is proposed in this paper to improve the energy consumption of the sensor nodes. Reducing the energy consumption of sensors in WSNs is the objective of this paper that is through selecting the sub optimum se...
متن کاملConsensus Clustering + Meta Clustering = Multiple Consensus Clustering
Consensus clustering and meta clustering are two important extensions of the classical clustering problem. Given a set of input clusterings of a given dataset, consensus clustering aims to find a single final clustering which is a better fit in some sense than the existing clusterings, and meta clustering aims to group similar input clusterings together so that users only need to examine a smal...
متن کاملChoosing a Clustering: An A Posteriori Method for Social Networks
Selecting an appropriate method of clustering for network data a priori can be a frustrating and confusing process. To address the problem we build on an a posteriori approach developed by Grimmer and King (2011) that compares hundreds of possible clustering methods at once through concise and intuitive visualization. We adapt this general method to the context of social networks, extend it wit...
متن کاملConsensus clustering in complex networks
The community structure of complex networks reveals both their organization and hidden relationships among their constituents. Most community detection methods currently available are not deterministic, and their results typically depend on the specific random seeds, initial conditions and tie-break rules adopted for their execution. Consensus clustering is used in data analysis to generate sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics, Optimization & Information Computing
سال: 2020
ISSN: 2310-5070,2311-004X
DOI: 10.19139/soic-2310-5070-716