A best constant for Zygmund’s conjugate function inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Best Constant for Zygmund's Conjugate Function Inequality

When the space L log+L is given the Hardy-Littlewood norm the best constant in the corresponding version of Zygmund's conjugate function inequality is shown to be r2 3~2 + 5-2 7-2 + • ■ ■ K = I-2 + 3"2 + 5"2 + 7" This complements the recent result of Burgess Davis that the best constant in Kolmogorov's inequality is K"1. The symbol K will be used throughout for the constant p2 _ 3-2 + 5-2 _ 7-2...

متن کامل

Best Constant in Sobolev Inequality

The equality sign holds in (1) i] u has the Jorm: (3) u(x) = [a + btxI,~',-'] 1-~1~ , where Ix[ = (x~ @ ...-~x~) 1⁄2 and a, b are positive constants. Sobolev inequalities, also called Sobolev imbedding theorems, are very popular among writers in part ial differential equations or in the calculus of variations, and have been investigated by a great number of authors. Nevertheless there is a ques...

متن کامل

Finding best possible constant for a polynomial inequality

Given a multi-variant polynomial inequality with a parameter, how to find the best possible value of this parameter that satisfies the inequality? For instance, find the greatest number k that satisfies a+b+c+k(ab+bc+ca)−(k+1)(ab+bc+ca) ≥ 0 for all nonnegative real numbers a, b, c. Analogues problems often appeared in studies of inequalities and were dealt with by various methods. In this paper...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

The Best Constant in a Fractional Hardy Inequality

We prove an optimal Hardy inequality for the fractional Laplacian on the half-space. 1. Main result and discussion Let 0 < α < 2 and d = 1, 2, . . .. The purpose of this note is to prove the following Hardy-type inequality in the half-space D = {x = (x1, . . . , xd) ∈ R : xd > 0}. Theorem 1. For every u ∈ Cc(D), (1) 1 2 ∫

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1976

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1976-0402393-4